Accelerating a Burst Buffer via User-Level I/0O Isolation

Jaechyun Han*, Donghun Koof, Glenn K. Lockwood¥, Jachwan Leef, Hyeonsang Eom* and Soonwook Hwang§
*Seoul National University, jaehyunhan@snu.ac.kr, hseom@ cse.snu.ac.kr
tKorea Aerospace University, amainlog @ gmail.com, jlee@kau.ac.kr
fLawrence Berkeley National Laboratory, glock@Ibl.gov
§Korea Institute of Science and Technology Information, hwang @kisti.re.kr

Abstract—Burst buffers tolerate I/O spikes in High-
Performance Computing environments by using a non-volatile
flash technology. Burst buffers are commonly located between
parallel file systems and compute nodes, handling bursty I/Os
in the middle. In this architecture, burst buffers are shared
resources. The performance of an SSD is significantly reduced
when it is used excessively because of garbage collection, and
we have observed that SSDs in a burst buffer become slow when
many users simultaneously use the burst buffer. To mitigate the
performance problem, we propose a new user-level I/0 isolation
framework in a High-Performance Computing environment
using a multi-streamed SSD. The multi-streamed SSD allocates
the same flash block for I/Os in the same stream. We assign
a different stream to each user; thus, the user can use the
stream exclusively. To evaluate the performance, we have used
open-source supercomputing workloads and I/0 traces from
real workloads in the Cori supercomputer at the National
Energy Research Scientific Computing Center. Via user-level
I/0 isolation, we have obtained up to a 125% performance
improvement in terms of I/O throughput. In addition, our
approach reduces the write amplification in the SSDs, leading
to improved SSD endurance. This user-level I/O isolation
framework could be applied to deployed burst buffers without
having to make any user interface changes.

Keywords-Burst Buffer; SSD; Write Amplification; Multi-
streamed SSD; Supercomputing Workload

I. INTRODUCTION

Computing power has increased tremendously in High-
Performance Computing (HPC) environments, and conse-
quently the amount of data that HPC systems must process
has increased as well. However, most supercomputers are
still using Hard Disk Drives (HDDs)-based parallel file
systems (PFSs) for their scratch storage, causing slow I/O to
become an increasing bottleneck [1]. To alleviate this bottle-
neck, burst buffer technologies are being developed. These
burst buffers are commonly located between compute nodes
and parallel file systems (PFSs) and use fast non-volatile
storage technologies such as Solid-State Drives (SSDs) to
mitigate bursty I/O operations. At the time of writing,
when multiple commercial burst buffers are available in
some supercomputers, they are used to accelerate their I/O
performance.

Flash blocks in an SSD have a block erasure character-
istic; even though random page-level I/O is possible with
single access, data can only be erased in the block unit. To

secure empty blocks, SSD controllers periodically perform
garbage collection where valid pages in blocks are copied
to a new block, and then the old block is fully erased.
Since garbage collection causes redundant write operations
to copy valid pages, write amplification is expected in the
SSD, and thus SSDs run slowly after being excessively
used. SSDs in a burst buffer are particularly prone to being
used excessively because the purpose of the burst buffer
is to absorb intense bursts of heavy I/O operations. In
addition, most of currently deployed burst buffers are share
resources, and thus multiple users simultaneously perform
I/O to the same SSD. Therefore, due to a large number
of I/O operations in supercomputing applications, SSDs
in burst buffers can suffer performance losses due to the
contention [2].

We propose a user-level I/0 isolation framework to min-
imize the garbage collection overhead. With this user-level
I/O isolation framework, the burst buffer assigns each flash
block exclusively to one user. Because the I/O characteristics
of supercomputing workloads are different for each user’s
application, we expect internal fragmentation could be min-
imized through user-level I/O isolation. To isolate a user’s
1/Os from the others’ 1/0s, we use multi-streamed SSDs [3]
which allocate the same flash block for I/Os in the same
stream. The latest NVM Express specification includes the
multi-stream feature as a standard [4], and thus we expect
this feature will be commonly available in future high-end
SSD devices. Using this multi-stream feature, we provide an
exclusive stream for each user and implement the user-level
I/0O isolation framework straightforwardly.

To demonstrate the effectiveness of this user-level I/O
isolation, we made a minimal burst buffer configuration
as an experimental environment. In the experimental burst
buffer, we generated supercomputing I/O patterns by using
open-source supercomputing workloads and replayed I/O
traces obtained from the Cori supercomputer at the National
Energy Research Scientific Computing Center (NERSC). To
replay the I/O traces we developed a workload emulator
which generates I/O loads analogous in a different environ-
ment. With these experiments, we showed that our user-
level I/O isolation framework is effective and can lead to
improvements in the performance of an SSD.

Our contributions are as follows:

o Uncovering the expected performance reduction in an
SSD-based burst buffer

« Presenting a method for measuring the I/O performance
in an HPC environment by using open-source super-
computing workloads and I/O traces of real workloads

o Proposing a user-level I/O isolation framework for a
burst buffer by using a multi-streamed SSD

The rest of the paper is organized as follows: Section 2
presents the background and our motivation of this work
presented in this paper. Section 3 shows the design of
our user-level I/O isolation framework. Section 4 describes
the characteristics of supercomputing workloads we used.
Section 5 shows the result of the performance evaluation
for this work. Section 6 presents discussions on real-world
burst buffers and a possible different approach, and Section
7 concludes the paper.

II. BACKGROUND AND MOTIVATION

A. Burst Buffer

Traditionally HPC systems often use PFS which are
comprised of only HDDs. However, with a sharp increase
of data generation caused by massive new HPC systems and
high-resolution experimental data sources, HDD-based PFSs
will not be able to satisfy the I/O requirements of HPC in
the near future [5]. Recently, the HPC community has begun
deploying burst buffers to address this problem [6], [7], [8].
The main idea of these burst buffers is to augment the HDD-
based PFS with a high-performance SSD tier to process
burst I/Os efficiently. Various architectures of burst buffer are
suggested, depending on where the burst buffer is located.
Most commonly a burst buffer is located in the middle of
PFS and compute node, and two state-of-the-art commercial
burst buffers, Cray’s DataWarp [9] and DDN’s IME [10], use
this architecture, and several other experimental burst buffer
designs leverage this design [11]. There are other studies
focusing on implementing burst buffers in a local node [12],
[13], [14] and integrating burst buffers directly into a PFS.

In this paper, we focus on the architecture of Cray’s
DataWarp solution because it is deployed in Cori supercom-
puter at NERSC [7], and we used Cori’s workload traces
to validate our approach. As we mentioned before, in this
architecture, a burst buffer is located between compute nodes
and PFS as shown in Figure 1. Each burst buffer node
consists of two 3.2TB SSDs, and the entire burst buffer
consists of 288 burst buffer nodes. When a user requests
a specific size of burst buffer space, then resource manager
allocates one or multiple burst buffer nodes with a fixed ratio
of capacity requested to the burst buffer nodes. As a result,
a single SSD on Cori can be shared by dozens of users at
the same time.

IFigure excerpted from a document on the NERSC burst buffer archi-
tecture [7]

Compute Nodes

Blade = 2 x Burst Buffer Node (2x SSD)
/ 1/0 Node (2x InfiniBand HCA)

A
[|
SSD
..... BB Ssp

Lustre OSSs/0STs

SSD
o o o o o es D
oo feul-fon o ETE

SSD
..... 88 330

\ A J
[

Storage Fabric (InfiniBand)

Storage Servers

I

Aries High-Speed Network InfiniBand Fabric

Figure 1: Burst buffer in Cori supercomputer!

B. Block Erasure Characteristic of Solid-State Drives

SSDs are rapidly replacing HDDs due to their fast data
access time. Although SSDs can read or write data at the
page level, data can only be written to pages that have been
erased, and data in SSDs can only be erased at the block
level. Therefore, if some pages in a block are valid, then
the block cannot be erased until all of its pages become
invalid. After being excessively used, a situation can arise
where no erased pages are available on the whole SSD even
if many pages are invalid. To write a new page, a garbage
collection process inside the SSD’s controller collects valid
pages into the same block, then erases the invalid blocks. In
this case, multiple write operations occur inside the SSD
to accommodate a single host write operation, and this
phenomenon is called write amplification [15]. When the
write amplification is high, the performance of the SSD
becomes low because of superfluous copy operations. The
write amplification factor (WAF), calculated by Equation
1, is regularly measured to evaluate the performance of
an SSD. In Equation 1, # of NAND data units written
denotes the amount of data physically written to the NAND
which includes the amount of data copied during the garbage
collection.

WAF — # of NAND data uTlits W.ritten 0
of Host data units written

Multi-streamed SSDs have been developed to mitigate
this write amplification and performance loss problem by
allowing a user to allocate a stream for data so that data
with similar lifetimes can be stored in the same block.

C. Motivation

As we mentioned in Section II-A, a burst buffer is a shared
resource in an HPC environment, and in the DataWarp
system deployed at NERSC, dozens of users can share a
single SSD. We argue that if many users simultaneously
write and erase data in an SSD, then the write amplification

of the SSD will increase. Because the purpose of the burst
buffer is to mitigate bursty I/Os, multiple users performing
bursty I/Os to each SSD is a sufficient condition to increase
the write amplification of the SSD. As write amplification
of the SSD becomes high, the SSD will slow down due to
superfluous write operations, and this performance loss will
impact the performance of the entire burst buffer. Therefore
by isolating user I/Os, we can mitigate write amplification
in the SSD by placing the data with a similar lifetime in
the same block via preventing each block being shared by
multiple users.

D. SSD impact on Burst Buffer

As a motivating example, we performed excessive 1/Os
in an SSD. The goal of this experiment was to show the
performance degradation of SSD is a real problem in burst
buffer. To focus on the SSD, we used a server node with a
single SSD attached. We generated multiple supercomputing
I/O workloads into the SSD to validate our argument. Before
each experiment, we performed a factory reset to delete
the flash mapping table and erase every block in the SSD.
The results are shown in Figure 2. Since we reset the
SSD before the test, the throughput of the SSD was the
highest initially. However, as the time passed, the throughput
suddenly dropped as the drive hit the characteristic write
cliff. At the same time, as shown Figure 2(b), the WAF of
the SSD increased. As we discussed above, this result is
an anticipated one; as the write amplification of the SSD
increases, the performance decreases.

III. DESIGN OF USER-LEVEL I/O ISOLATION SYSTEM

To mitigate the overhead incurred by garbage collection
operations, we isolate each user’s I/Os in separate SSD
blocks. The lifetimes of data items in an SSD block are
an important factor in data fragmentation. We propose user-
level /O isolation, utilizing the fact that the data items
belonging to the same user should tend to have similar
lifetimes. In this section we describe our I/O isolation
method and propose a way of implementing our framework
in the real-world burst buffers.

A. User-level I/0 isolation using a multi-streamed SSD

In order to isolate a user’s I/0Os from others’, we use
a multi-streamed SSD. In this multi-streamed SSD, flash
blocks are exclusively used by the same streams, and the
stream information is provided by the application. In a burst
buffer node, the data from a different user can be clearly
separated, and thus we assign each user a different stream
in the burst buffer node to achieve this I/O isolation.

Figure 3 illustrates the effect of user-level I/O isolation.
We assume that three users write data to an SSD simultane-
ously, and at a certain point user A deletes all of user A’s
files (for example, after those files have been visualized in
transit [16]). Figure 3(a) shows an SSD in a legacy burst

0.6 | |

0.4 *

Normalized Throughput

0.2 ! ! ! ! ! 1
0 10 20 30 40 50 60

Time (min)

(a) Aggregated throughput of the SSD

25 +

1.5 +

+
]_ [—

0 10 20 30 40 50 60

Time (min)

Write Amplification Factor
i

(b) Write Amplification Factor of the SSD

Figure 2: Aggregated throughput and Write Amplification
Factors of the SSD over time

buffer, and Figure 3(b) shows an SSD in a burst buffer with
user-level I/0 isolation under this workload. In both cases,
there are eight deleted pages (indicated by shaded boxes)
with five pages left free. However when performing user-
level I/O isolation, Block 0 and Block 3 can be erased by a
single operation without any extraneous page copies made.
This operation will free eight more pages. As a result of
this user-level I/O isolation, 13 free pages will be available
in the SSD after only two erase operations. Some pages in
blocks could be wasted in a multi-streamed SSD because
each stream exclusively uses a block. But block size of the
SSD is smaller than SMB [17], and half-used blocks exist
only in single current block per stream. Therefore such space
wastages are negligible.

To test the impact of this user-level I/O isolation, we
configured a single burst buffer node with a multi-streamed
SSD, and then replayed 1/O traces derived from HPC work-
loads, to the SSD in our simulation environment. Although
we used a single machine for this burst buffer, we generated
multiple I/O workloads simultaneously to reproduce the
multi-user workload, which a real burst buffer node would
experience from the SSD’s point of view. The applications
we used to generate supercomputing I/O workloads are

Block 0 Block 2 Block 4
USER A #1 USER B #3 USERA#8
USER B #1 USER C #3 USER C #5
USER A #2 USER A #5 USER B #6
USER C #1 USER C #4

Block 1 Block 3 Block 5
USER A #3 USER B #4
USER C #2 USER B #5
USER B #2 USER A #6
|USER A#4 | |USERA#7 | | |

(a) Legacy 1/0s

Block 0 Block 2 Block 4
USER A #1 USER C #1 USER B #5
USER A #2 USER C #2 USER B #6
USER A #3 USER C #3
USER A #4 USER C #4

Block 1 Block 3 Block 5
USER B #1 USER A #5 USER C #5
USER B #2 USER A #6
USER B #3 USER A #7
|USER B#4 | |USERA#8 | | |

(b) Isolated User 1/Os

Figure 3: Block status of an SSD when 3 users simultane-
ously write data

described in Section IV.

B. User-level I/0 isolation framework

Ultimately, we are proposing our framework for existing
supercomputing environments. Figure 4 shows a current
supercomputing environment. To perform a computation,
a user requests resources from the system workload man-
ager. This workload manager, which monitors the status
of resources such as compute nodes and burst buffers,
then reserves resources and launches the user’s job within
the supercomputing environment. Our framework could be
seamlessly implemented in the existing environment, but we
need to modify the workload manager and burst buffer to
be aware of multi-streams.

The workload manager is already designed to handle
streams because it is already responsible for scheduling the
burst buffer requests from users. Thus, when the workload
manager allocates burst buffer resources and creates the
user’s virtual file system, it would simply have to map a
stream ID corresponding to the user to that user’s burst
buffer resource allocation. In this mapping, any I/O that
occurs on that user’s burst buffer allocation can also contain

the user’s stream ID, and this information would be passed
down to the SSD devices from or to which the data was
being read or written, respectively. Because this framework
performs I/O isolation entirely within the burst buffer nodes,
no changes to the user application would have to be made,
and all applications will be able to realize the benefits of
this optimization.

IV. SUPERCOMPUTING WORKLOADS

To evaluate our system, we used two open-source su-
percomputing workloads and 1/O traces from the Cori
supercomputer at NERSC. In this section, we introduce
workloads and a workload emulator we used to evaluate
the performance.

A. Chombo

Chombo [18] is a high-performance block-structured
adaptive mesh refinement framework for solving partial
differential equations in complex geometries. The EBAM-
RINS [19] application used in this study is built on Chombo
and solves the incompressible Navier-Stokes equations on
non-rectangular domains. Chombo itself scales from a single
node to hundreds of thousands of cores, and its output files
can range from several GB to several TB per time step.
Chombo uses the HDF5 library to write and read both its
checkpoint and plot data to a single shared file in parallel
through MPI-IO and can make use of the burst buffer for
both checkpointing and in-transit visualization [16].

B. Nyx

Nyx [20] is an N-body hydrodynamic cosmological sim-
ulation application that uses the BoxLib [21] adaptive mesh
refinement framework. It generates separate checkpoint and
plot files at each time step and, unlike Chombo, writes
to multiple separate files in parallel with a configurable
ratio of compute processes to I/O processes. The process
of generating these files is very I/O intensive, and Nyx was
one of the first extreme-scale scientific applications to be
optimized to make use of burst buffers [7].

In this study, we simulate the formation of the Santa
Barbara cluster [22], a standard code comparison test for
cluster formation, using both the full dataset (SantaBarbara)
and a lower-resolution dataset (MiniSB). To more 1/O bursts
while keeping wall times manageable, we configured these
tests to generate checkpoint and plot files after every step.
The number of files and overall size of them are listed in
Table 1.

C. Cori I/O traces

Darshan [23] is a lightweight I/O profiling tool that
transparently records bounded statistics about applications’
I/O behavior by intercepting I/O calls at many layers in-
cluding POSIX, MPI-IO, and HDF5. Because it defers
data reduction, compression, and storage until the end of

job4 Wait to be scheduled Compute Node 1 Compute Node 2 Compute Node N
iob3 Compute Node 5, 6
J Burst Buffer Node 1, 3
job2 Compute Node 4 Burst Buffer Burst Buffer Burst Buffer
Burst Buffer Node 1 Node 1 Node 2 Node N
iob1 Compute Node 1, 2, 3 SSD1 SSD2 SSD1
J Burst Buffer Node 1,2
\ Workload
le—
Manager

Figure 4: Architecture of a supercomputing environment

Table I: Characteristics of open-source supercomputing workloads

Workload Number of checkpoint files | Checkpoint size (MB) | Number of plot files | Plot size (MB)
EBAMRINS - Small 1 41 1 89
EBAMRINS - Large | 1 164 1 353

MiniSB 23 200 13 294
SantaBarbara 11 1400 9 1200

an application run, it is extremely lightweight and can be
deployed across an entire system with minimal impacts on
application performance. As a result, a significant body of
application I/O data can be captured from production HPC
workloads, and this study used a sampling of such profiling
data from the Cori system at NERSC.

D. Workload Emulator

We developed a workload emulator which replays I/Os
from I/O traces. Each I/O record in an I/O trace from
Darshan consists of the I/O size, a timestamp at which the
I/0 began, and the number of I/Os. With this information,
the workload emulator generates realistic application I/O
patterns. Even though Darshan records I/Os from multiple
layers, we focused on POSIX I/Os because most modern
file systems (including DWFS) implement other I/O layers
on top of POSIX, making the POSIX Darshan data the most
accurate representation of the load that the SSDs experience.
Because Darshan does not record the file unlinking informa-
tion, we manually removed generated files at certain times
while performing experiments to represent old checkpoint
files being discarded. I/Os from all over the nodes were
recorded in the I/O trace, and the workload emulator creates
a thread for each node to emulate I/Os. In addition, the
emulator can choose the maximum number of nodes to
emulate to scale the workload to the size of our test system.
The design of this workload emulator is illustrated in Figure
5.

V. EVALUATION

A. Experimental Environments

To validate our I/O isolation framework, we used a single
node with 2-way 10-core Intel Xeon processors and 80GB

r Darshan /O logs

Workload Emulator

1 2 L 2 1 2
’ Generate POSIX 1/0s ‘

-
Target File System

Figure 5: Workload Emulator Architecture

AN

RAM. For a target storage, we used a 480GB Samsung
PMO953 SSD, directly attached via a PCle Gen3 bus, with
modified firmware to support the multi-stream feature.

Before every experiment, we securely erased the SSD to
prevent the WAF values measured in previous experiments
from affecting the current measurement. While each test was
running, we used nmon [24] to record the I/O throughput
of the SSD. We also periodically calculated the WAF of the
device by measuring the amount of data written by the host
and the amount of data physically written to the NAND.
After sufficient time, the I/O throughput and WAF reached
a steady state. Once this happened, we used the averages of
the values of steady-state I/O throughput and the WAF to
collect the results presented.

B. Performance under various configurations

In order to understand the performance characteristics
of our framework, we also compared the performance of

the legacy system to our user-level I/O isolation system in
various configurations. In these experiments, we generated
bursty I/Os on an SSD using Flexible 10 Tester (FIO). We
then measured the throughput of the SSD while changing the
space usage of the SSD, space allotment method to users,
and the number of users. In these configurations, the total
number of threads were the same in the experiments; as the
number of users was increased, the number of I/O threads
per user was reduced.

We performed two sets of experiments to evaluate the
throughput of the SSD:

1) Performance evaluation while changing the space us-

age and space allotment method
e Number of FIO threads: 24
o Number of users: 8§
¢ SSD space usage: 30%, 50%, 80%
o SSD allotment methods: Allotment #1, Allotment
#2, Allotment #3
2) Performance evaluation while changing the number of
users
e Number of threads: 24
e Number of users: 2, 4, 8
o SSD space usage: 80%
o SSD allotment method : Allotment #2

In both sets of experiments, FIO created 24 threads, with
each generating a 64MB file continuously. We controlled the
space usage of the SSD by the users’ deleting their old files
when their space quotas exceed the certain proportions. In
experiment set #1, we also tested three SSD space allotment
methods:

o Allotment #1 is the method that allots the same space

to each user.

o In Allotment #2, users get different spaces progres-
sively increasing from 40GB to 60GB.

« In Allotment #3, we allot bimodal spaces to users; users
get spaces from 10GB to 15GB and from 60GB to
80GB.

With these allotment methods, we aim to test the effec-
tiveness of different workloads; since all the FIO threads
generate the same I/Os, a different allotment allows us to
desynchronize users’ I/O timing (Allotment #2) or change
their I/O behavior such as how frequently they remove files
(Allotment #3).

Figure 6 illustrates the normalized throughput of the SSD
on both systems while changing the space usage of the
SSD and space allotment method to users. On the legacy
system, the throughput was decreased as more SSD space
was used. This is a well-known phenomenon; due to small
space left in the SSD, it becomes difficult for garbage
collection operations to collect valid pages to an empty
block. Moreover, the SSD controllers do not even invoke
garbage collection when many free blocks are available.
The throughput when using Allotment #3 shows the worst

= Allotment #1 oy Allotment #2 g Allotment #3

[\ \ \ \ \ \ \ \ \
[|

804?

P —

| |
0 01 020304 05 06 07 08 09 1
Normalized Throughput

SSD Space Usage (%)

(a) Legacy

= Allotment #1 oy Allotment #2 mm Allotment #3
l I I I I I I I I I
|]

—

—

| | | | | | | |
0 01 02 03 04 05 06 0.7 08 09 1
Normalized Throughput

SSD Space Usage (%)

(b) User-Isolated

Figure 6: Normalized throughput while changing the space
usage and space

performance. In this allotment method, some users have a
small quota, and they undergo frequent delete operations.
These frequent deletes cause many blocks to have invalid
pages, and these blocks incur significant overheads since the
garbage collection process must process a large number of
sparse blocks. As a result, the case of 80% SSD usage with
Allotment #3 shows a 67% decrease in SSD throughput.
However, in the system with user-level I/O isolation, there
is only a slight change in throughput because the frequent
file deletions are not impacting blocks being used in other
users’ streams. In the worst case, only 5% performance loss
is observed with user-level I/O isolation, demonstrating that
our system is effective.

Figure 7 shows the normalized throughput while changing
the number of users. The throughput of the SSD decreases
as the number of users increases. Since all users perform
I/O simultaneously, the increase in the number of users
also increases the number of blocks that are shared by
multiple users. In contrast, in the system with the user-level
I/0 isolation, the performance difference is negligible but
increases slightly as the number of users increases. This
slight performance decrease for small user counts results

5
3 8
ks
5 4
o
= 2
=]
z | | | | | | | | |
0 0.1 02 03 04 05 06 0.7 08 09 1
Normalized Throughput
(a) Legacy
” \ \ \
b5
=) 8
kS
_“E 4
= 2
=]
Z

\ \ \ \ \ \ \ \ \
0 01 02 03 04 05 06 07 08 09 1
Normalized Throughput

(b) User-Isolated

Figure 7: Normalized throughput while changing the number
of users

from the overheads of our file deletion process; at small user
counts, there are more files to scan and unlink when they
reach their allotted quotas, which impacts our throughput
measurements. Consequently, the performance decreases in
order to manage generated files. In these experiments, the
system with user-level I/O isolation which we are proposing
retains the performance in various configurations.

In summary, the user-level I/O isolation shows better
performance by reducing the garbage collection overhead,
as a major factor in performance degradation, when multiple
users perform bursty I/Os simultaneously.

C. Chombo

At first we performed experiments using EBAMRINS,
a Chombo-based application. Table I shows the number
of output files and their size for workloads we used. We
configured workloads to generate one checkpoint and one
plot file after each step of the computation, and we ran small
version and large version of workloads which determine the
size of output files.

We assume eight users are running workloads on an SSD
simultaneously; Three users are running two EBAMRINS-
small, and one EBAMRINS-large and the other five users are
running three EBAMRINS-small workloads. Therefore each
user ran three workloads. We allotted users’ SSD quotas to
vary in size from 30GB to 86GB. Each user performs I/Os
inside their alloted quota, and when more than 90% of their
space is used, the user deletes his or her files, starting with
the oldest.

S 9

2 1s)]
s

= 1.6 - =
S 14 =
= 1.2+ =
2 il |
a 08 |
E 06 -
< 04 i
2 02 -
§ 0

Legacy User-Isolated
(a) Average write amplification factor
Legacy

User-Isolated

| | \ \
1.2 14 16 1.8 2

| | | |
0 02 04 06 08 1
Normalized Throughput

(b) Average Normalized Throughput

Figure 8: Average write amplification factor and throughput
of the SSD while performing experiments based on Chombo

Figure 8 illustrates the resulting SSD throughput and
the write amplification factor. In Figure 8(a), average write
amplification factors in the legacy system shows about
1.62. This value supports our claim that superfluous write
operations had occurred in the SSD. In contrast, average
write amplification factor of the user-level I/O isolated
system is 1.02, which show our system works as designed.
Correspondingly, the throughput of SSD in our system,
shown in Figure 8(b), increased by 51% compared to the
legacy system.

D. Nyx

We also performed experiments using the Nyx cosmolog-
ical simulation application. We ran two simulation inputs,
MiniSB and SantaBarbara, which produce different output
file sizes. As shown in Table I, both Nyx inputs generate
tens of files for checkpointing and plotting. We configured
the workload to generate a checkpoint file and a plot file at
each step of the computation.

As with the Chombo experiments, we assume eight users
share an SSD. We allotted users SSD spaces which vary in
size from 30GB to 86GB. Each user ran one MiniSB and
two SantaBarbara workloads in their own space. When a user
exceeds 85% of the allotted SSD space, the user deletes files
starting with the oldest first.

As shown in Figure 9, I/O throughput is improved by 58%
in the user-level I/O isolated system when compared to the
legacy system. In write amplification perspective, average
WAF in legacy mode was 1.29 but it is improved to 1.01 by

S 9

2 18|]
[

= 1.6 |- .
° 1.4 .
=i 1.2+ .
s 1 1
s 08} N
E 06 -
< 04 |
£ 02 :
§ 0

Legacy User-Isolated
(a) Average write amplification factor
Legacy

User-Isolated

| | \ \
1.2 14 16 1.8 2

| | | |
0 02 04 06 08 1
Normalized Throughput

(b) Average Normalized Throughput

Figure 9: Average throughput and write amplification factor
of the SSD while performing experiments based on Nyx

isolating user 1/Os.

E. Mixed workloads

Until now, our experiments covered cases when only
similar workloads were running simultaneously. From those
experiments, we have demonstrated our user-level I/O iso-
lated system is effective. However, there is a discrepancy
from the real-world supercomputing environments where
workloads tend to be highly diverse [25]. In this subsection,
we configured the environment using multicomponent work-
loads composed of Chombo-EBAMRINS, Nyx, and FIO to
evaluate our user-level I/O isolated system in a more realistic
way.

We assume eight users are simultaneously running work-
loads on an SSD, with three users running Nyx, another three
users running Chombo-EBAMRINS, and the remaining two
users running FIO. Moreover, in this experiment, all users
are differentiated by changing the number of threads or
processes. We allotted the same SSD space to each user as
in previous experiments, and each user performs I/Os inside
his or her allotted space. Once again, users delete files in
oldest order when more than 90% of their space is used.

The results are shown in Figure 10. Figure 10(a) rep-
resents average write amplification factor and shows that
the average write amplification factor is 1.01 in the user-
level I/O isolated system, while that of the legacy system is
1.47. This result shows even in this realistic mixed-workload
configuration, our proposed system is providing consistent
benefit. Average 1/0 throughput of the experiments is shown

S 9

2 1)]
s

= 1.6 - =
S 14 =
= 1.2+ =
2 if |
a 081 |
E 06 -
< 04 i
2 02 -
§ 0

Legacy User-Isolated
(a) Average write amplification factor
Legacy

User-Isolated

| | | \
1.2 14 16 1.8 2

| | | |
0 02 04 06 08 1
Normalized Throughput

(b) Average Normalized Throughput

Figure 10: Average write amplification factor and throughput
of the SSD while performing experiments based on mixed
workloads

in Figure 10(b) and demonstrates that I/O throughput in-
creases by 60% by effectively mitigating garbage collection
overhead.

F. Workload Emulator

Even though our experiments above covers realistic super-
computing environments, they are synthetic configurations
of workloads. As we described in Section IV-C, we obtained
real workload I/O traces from the Cori supercomputer at
NERSC. We selected 40 I/0 traces, and for each experiment,
we randomly choose 16 Darshan logs and replayed them us-
ing our workload emulator described in Section IV-D. Brief
I/O characteristics of 40 I/O traces we selected are shown
in Figure 11. Please note that both axes are in logarithmic
scale and it shows our target workloads have widely different
characteristics. We assume each user is running a workload;
therefore in total 16 users shares an SSD. Although each I/O
trace contains I/Os from all the nodes which the application
used in the supercomputer, each workload emulator job
replays 1I/Os of 4 nodes from the I/O trace to match the
scale of our experimental environment. Since we randomly
chose the workloads without knowing their characteristics,
we ran this experiment five times with different sets of I/O
traces to make the results more trustworthy. We allotted
users SSD spaces which vary in size from 12GB to 31GB.
Unfortunately, Darshan traces do not record information
related to file or directory removal, so we delete files when
each user’s disk usage is over the certain threshold.

L1 11 11 1 1 R s |
108 + E

g 107 E
A=) F]
g 106 ; ;
=3 F E
o B +]
£ 100} * oty E
B F + H + 4+ B
S 10t} e]
) g + +} + o g
,SED s r + + " B
£ 10° ¢ " + 4
E ++ E

102 £ E

g v 1

101 L T Y A O VY A AT \HH7

0t 10?2 10 10* 105 105 107 10®
Average Size of Write Operations (Bytes)

Figure 11: Characteristics of 40 I/O traces we used in
workload emulator experiments

Results are shown in Figure 12. In all test cases, our
user-isolated system outperforms the legacy system. Similar
to previous experiments, the write amplification factor in
our user-isolated system is very close to 1.0, and overall
throughput improves up to 125%.

G. Summary

These experiments show that our user-level I/O isolation
framework is useful to mitigate garbage collection overhead
in SSDs. In this subsection, we summarize findings we
learned from these experiments.

1) Performance over space usage and the number of
users: As shown in Section V-B, the performance of SSDs
decreases more when the disk usage is high. The reason
is when there’s plenty of space left in the SSD, we can
write data to an empty block without requiring garbage
collection. Also, while the same number of write operations
are occurring, the number of users who delete some of their
files at any arbitrary time affects the performance. This is a
result of partially invalid blocks coming from different data
lifetimes. We resolve this problem by applying user-level I/O
isolation which works well regardless of SSD space usage
and the number of users.

2) Performance when performing open-source supercom-
puting workloads: We performed experiments using open-
source supercomputing workloads in the scenario of 8 users
using a burst buffer. We used Nyx, a Chombo-based applica-
tion, and FIO for generating synthetic I/Os. In these exper-
iments, resulting average write amplification factors of the
legacy system was between 1.29 and 1.62 while that of our
user-level I/O isolated system was at most 1.02. This result
shows our system effectively eliminates superfluous physical

B nLegacy 10 User-Isolated

2.5

Normalized Throughput

T T T T T
Set #1 Set #2 Set #3 Set #4 Set #5
(a) Average throughputs

B0 Legacy [l 0 User-Isolated
2.5

1.5 |
11 |

0.5 H H |
0 T T T T T

Set #1 Set #2 Set #3 Set #4 Set #5

(b) Average write amplification factor

Write Amplification Factor

Figure 12: Average throughputs and write amplification
factors of the SSD while performing experiments using
workload emulator

write operation in SSD. Correspondingly, the throughput of
the SSD increased up to 60% over the legacy system.

3) Performance when emulating real supercomputing
workloads: We performed experiments using a workload
emulator which generates I/O based on the I/O traces
collected from the Cori supercomputer. We used 40 I/O
traces from real supercomputing applications and perform
the evaluation five times, each time randomly choosing 16
workloads. We assume each user runs a workload, and thus
16 users share a burst buffer. The average write amplification
factor of the SSD in the legacy system varied between
1.52 and 2.14. However, the average write amplification
factor of the SSD in our user-level I/O isolated system was
under 1.02. Again our approach successfully mitigates the
overhead from garbage collection while processing bursty
I/Os. As a result, the throughput of the SSD increased up to
125% over the legacy system.

VI. DISCUSSION

A. SSDs in Deployed Burst Buffers

We analyzed internal logs of SSDs in Cori’s burst buffer.
Since these are parts of the running production system, we
can’t record device logs periodically as in our experiments,

Number of Devices
—
o
(e}
I
|

40 |-

0| . .
O T T |

1 2 3 4 5 6 7 8

Write Amplification Factor

Figure 13: Write Amplification Factor of the SSDs in Cori’s
Burst Buffer

but with internal device logs we could calculate the average
write amplification factor over the burst buffer’s lifetime.
We calculated write amplification factors for all devices,
and as shown in Figure 13, the write amplification factors
vary primarily between 2 and 4 in the SSDs in Cori’s
burst buffer. More than hundred devices’ write amplification
factors are even larger than 5, although most of these
high-WAF devices were also in service for significantly
less time than the majority. Even though these SSDs are
different from SSDs we used in experiments, the resulting
write amplification factors of our experiments in the Legacy
system are between 1.5 and 2.5, and thus the real-world burst
buffer suffers from significantly high write amplification as
found in our evaluations. All of our results obtained with
user-level I/O isolation show no more write amplification
than 1.02. Therefore, we believe we can significantly reduce
write amplification of SSDs in the current burst buffer
without changing the user level interfaces by applying our
framework presented in Section III-B. Given values of the
write amplification factor, 2 to 4, we expect our framework
could improve the throughput of the burst buffer more than
twice, as in our experiments.

B. Flash Block Assignment by I/O Characteristics

In this paper, we achieved the performance improvement
by assigning a flash block exclusively to each user. With
the multi-streamed SSD, another approach is possible: users
can annotate their code when performing I/Os. For example,
let us assume the user is running an application which
generates checkpoint and computation results as files. The
user keeps the last three checkpoint files and deletes the
older checkpoint files, but the user keeps all the result
files until the application finishes. In this situation, the
user can specify to use a different stream for checkpoint
files and result files. In this way, data with similar lifetime
could be assigned to same flash block and it is possible
to separate I/O more precisely than our user-level isolation
approach. In this approach the user should correctly annotate
the code, which would be a burden to the user, but there

is also an opportunity for checkpointing libraries such as
FTL to abstract this from the application [14], [13]. Such
application-level annotations would have to be supported by
the burst buffer user interface; by comparison, our user-level
I/O isolation is more straightforward because it does not
require any user code modification and can be implemented
entirely at the system level.

VII. CONCLUSION

With fast random access characteristic of SSDs, burst
buffers now ameliorate the I/O bottlenecks of HDD-based
PFSs in High-Performance Computing environments. In this
paper, we argue that bursty I/Os in a burst buffer will cause
write amplification in SSDs, and this causes the throughput
of entire burst buffer system to degrade. With multiple
supercomputing workloads, we showed that SSDs in the
burst buffer are vulnerable to these bursty I/Os. To mitigate
the write amplification in burst buffers, we propose a new
user-level I/O isolation framework to reduce the impacts of
the SSDs being a shared multi-user resource. To implement
our user-level I/O isolation, we assign exclusive NAND
block to each user by use of the multi-streamed SSD. Our
experiments show our framework improves the throughput
of the burst buffer up to 60% with open-source scientific
workloads and up to 125% when replaying real I/O traces
from the Cori supercomputer at NERSC. In future work, we
plan to apply our user-level I/O isolation framework into
actual burst buffers. In order to do this, we need to customize
many parts of a supercomputing environment as described in
Section III-B. Still, we expect our framework will improve
the performance of the burst buffer, and thus the burst buffer
will be more effective in mitigating the bottlenecks of disk-
based parallel I/O.

ACKNOWLEDGMENT

We thank Dr. Jaeheon Jeong, Dr. Sangyeun Cho and
their group at Samsung Electronics for providing the multi-
streamed SSDs and helping us while using them. We also
thank Katie Antypas at the National Energy Research Scien-
tific Computing Center (NERSC) for helping us with some
real applications and their burst buffer use cases on the Cori
supercomputer.

This research was supported by Institute for Information
and Communications Technology Promotion (IITP) grant
funded by the Korean government (MSIP) (No.RO190-
16-2012, High Performance Big Data Analytics Platform
Performance Acceleration Technologies Development). This
work was also supported by BK21 Plus for Pioneers in
Innovative Computing(Dept. of Computer Science and En-
gineering, SNU) funded by National Research Foundation
of Korea(NRF) (21A20151113068)

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

REFERENCES

B. Xie, J. Chase, D. Dillow, O. Drokin, S. Klasky, S. Oral,
and N. Podhorszki, “Characterizing output bottlenecks in a
supercomputer,” in Proceedings of the International Confer-
ence on High Performance Computing, Networking, Storage
and Analysis. 1EEE Computer Society Press, 2012, p. 8.

S. Thapaliya, P. Bangalore, J. Lofstead, K. Mohror, and
A. Moody, “Managing I/O Interference in a Shared Burst
Buffer System,” in 2016 45th International Conference on
Parallel Processing (ICPP). IEEE, aug, pp. 416-425.

J.-U. Kang, J. Hyun, H. Maeng, and S. Cho, “The multi-
streamed solid-state drive.” in HotStorage, 2014.

A. Huffman, “Nvm express revision 1.3 specification,” NVM
Express, Inc., 2012.

C. S. Daley, L. Ramakrishnan, S. Dosanjh, and N. J. Wright,
in Proceedings of the 6th International Workshop on Big Data
Analytics: Challenges, and Opportunities (BDAC-15).

N. Liu, J. Cope, P. Carns, C. Carothers, R. Ross, G. Grider,
A. Crume, and C. Maltzahn, “On the role of burst buffers in
leadership-class storage systems,” in Mass Storage Systems
and Technologies (MSST), 2012 IEEE 28th Symposium on.
IEEE, 2012, pp. 1-11.

W. Bhimji, D. Bard, M. Romanus, D. Paul, A. Ovsyannikov,
B. Friesen, M. Bryson, J. Correa, G. K. Lockwood, V. Tsulaia
et al., “Accelerating science with the nersc burst buffer early
user program,” Proceedings of Cray Users Group.

B. Hadri, S. Kortas, S. Feki, R. Khurram, and G. Newby,
“Overview of the KAUST’s Cray X40 System—Shaheen II,”
in Proceedings of the 2015 Cray User Group, 2015.

D. Henseler, B. Landsteiner, D. Petesch, C. Wright, and N. J.
Wright, “Architecture and Design of Cray DataWarp,” in
Proceedings of the 2016 Cray User Group.

W. Schenck, S. El Sayed, M. Foszczynski, W. Homberg, and
D. Pleiter, “Early evaluation of the “infinite memory engine”
burst buffer solution,” in International Conference on High
Performance Computing. Springer, 2016, pp. 604-615.

T. Wang, S. Oral, Y. Wang, B. Settlemyer, S. Atchley,
and W. Yu, “BurstMem: A high-performance burst buffer
system for scientific applications,” in 2014 IEEE International
Conference on Big Data (Big Data). 1EEE, oct, pp. 71-79.

D. Kimpe, K. Mohror, A. Moody, B. Van Essen, M. Gokhale,
R. Ross, and B. R. de Supinski, “Integrated in-system storage
architecture for high performance computing,” in Proceedings
of the 2nd International Workshop on Runtime and Operating
Systems for Supercomputers. ACM, 2012, p. 4.

“Design and modeling of a non-blocking checkpointing sys-
tem,” in 2012 International Conference for High Performance
Computing, Networking, Storage and Analysis. 1EEE, nov,
pp. 1-10.

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

(23]

[24]

(25]

L. Bautista-Gomez, S. Tsuboi, D. Komatitsch, F. Cappello,
N. Maruyama, and S. Matsuoka, “FTI: high performance
Fault Tolerance Interface for hybrid systems,” in Proceed-
ings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis on - SC '11.
New York, New York, USA: ACM Press, p. 1.

X.-Y. Hu, E. Eleftheriou, R. Haas, I. Iliadis, and R. Pletka,
“Write amplification analysis in flash-based solid state
drives,” in Proceedings of SYSTOR 2009: The Israeli Exper-
imental Systems Conference. ACM, 2009, p. 10.

A. Ovsyannikov, M. Romanus, B. V. Straalen, G. H. Weber,
and D. Trebotich, “Scientific Workflows at DataWarp-Speed:
Accelerated Data-Intensive Science using NERSC’s Burst
Buffer,” in PDSW-DISCS ’16 Proceedings of the Ist Joint
International Workshop on Parallel Data Storage & Data
Intensive Scalable Computing Systems, 2016, pp. 1-6.

Samsung Electronics, “Samsung V-NAND technology (White
Paper),” Tech. Rep., 2014.

P. Colella, D. Graves, T. Ligocki, D. Martin, D. Modiano,
D. Serafini, and B. Van Straalen, “Chombo software package
for amr applications-design document,” 2000.

G. H. Miller and D. Trebotich, “An embedded boundary
method for the navier-stokes equations on a time-dependent
domain,” Communications in Applied Mathematics and Com-
putational Science, vol. 7, pp. 1-31, 2012.

A. S. Almgren, J. B. Bell, M. J. Lijewski, Z. Luki¢, and
E. Van Andel, “Nyx: A massively parallel amr code for
computational cosmology,” The Astrophysical Journal, vol.
765, no. 1, p. 39, 2013.

J. Bell, A. Almgren, V. Beckner, M. Day, M. Lijewski,
A. Nonaka, and W. Zhang, “Boxlib users guide.”

C. S. Frenk, S. D. M. White, P. Bode, J. R. Bond, G. L.
Bryan, R. Cen, H. M. P. Couchman, A. E. Evrard, N. Gnedin,
A. Jenkins, A. M. Khokhlov, A. Klypin, J. F. Navarro, M. L.
Norman, J. P. Ostriker, J. M. Owen, F. R. Pearce, U. Pen,
M. Steinmetz, P. A. Thomas, J. V. Villumsen, J. W. Wadsley,
M. S. Warren, G. Xu, and G. Yepes, “The Santa Barbara
Cluster Comparison Project: A Comparison of Cosmological
Hydrodynamics Solutions,” The Astrophysical Journal, no. 2,
pp- 554-582, nov.

P. Carns, R. Latham, R. Ross, K. Iskra, S. Lang, and K. Riley,
“24/7 characterization of petascale i/o0 workloads,” in Cluster
Computing and Workshops, 2009. CLUSTER’09. IEEE Inter-
national Conference on. 1EEE, 2009, pp. 1-10.

N. Griffiths, “nmon performance: A free tool to analyze aix
and linux performance,” 2003.

G. P. Rodrigo Alvarez, P--O. Ostberg, E. Elmroth, K. Antypas,
R. Gerber, and L. Ramakrishnan, “HPC System Lifetime
Story,” in Proceedings of the 24th International Symposium
on High-Performance Parallel and Distributed Computing -
HPDC ’15. New York, New York, USA: ACM Press, pp.
57-60.

