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Abstract. Ransomware has been a growing threat to end-users in the
past few years. In response, there is also a burgeoning market for anti-
ransomware defense products, as well as research prototypes that explore
more advanced, behavioral analyses. Intuitively, ransomware should be
amenable to identification through behavioral analysis, since ransomware
recursively walks a user’s files and encrypts them, overwriting or delet-
ing the plaintext. This paper contributes a study of the effectiveness of
these behavior-based ransomware defenses, from both commercial prod-
ucts and academic proposals. We drive the study with a dead simple
ransomware, augmented with a number of both straightforward and new
evasion techniques. Surprisingly, our results indicate that most com-
mercial products are strikingly ineffective. Ten out of 15 commercial
products could not detect our simple ransomware without any evasive
techniques; most of the rest were evaded and able to ransom user data
with some combination of simple techniques. Only one tool appears to
correctly identify our ransomware, but suffers from staggering false pos-
itives, including flagging Windows Explorer, Firefox, and Notepad as
ransomware during routine operation. Our paper identifies a number of
techniques to manipulate entropy to match the original file. The paper
further shows that partial encryption, of as little as 3–5% of a file’s data
is sufficient to ransom most file formats. Finally, we show that a com-
bination of these techniques can render an aggregate malice score that
is well below that of a Linux kernel compile. In summary, these results
indicate that it is highly likely that ransomware will be able to adapt its
behavior to fit within the range of expected benign behaviors, avoiding
detection even by future generations of behavioral ransomware detectors.
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1 Introduction

Ransomware is a growing threat for computer users, especially smaller businesses
and less savvy users. For instance, over 16 million US dollars of bitcoins have
been paid in exchange for ransom from roughly 19,750 victims in the years
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2016 and 2017 [13]. In a nutshell, ransomware renders a user’s data unavailable,
typically by encryption, and then charges the data owner a ransom to recover
the data. Encryption is preferred to exfiltrating data, as the attacker need not
store or return the ransomed data, but, rather, can simply sell a decryption key
to the victim. This strategy is adopted by high-profile ransomware, including
CryptoLocker [28], Cerber, and WannaCry [21]. In principle, ransomware should
be a non-issue when users and enterprises follow best practices with respect
to back-ups and least administrative privilege, as data can be restored from a
secured back-up, nullifying the ransomware’s leverage over users. Unfortunately,
many users and businesses often do not follow these best practices, fall victim
to ransomware, and pay the ransom, because the loss of essential data, such as
patient or billing records, is more costly than the ransom.

The rising concern about ransomware has led to both commercial products,
such as CyberSight RansomStopper, Acronis Ransomware Protection, Check-
MAL AppCheck, CryptoDrop [30], and ZoneAlarm Anti-Ransomware as well as
research prototypes, including Redemption [16], ShieldFS [5], and RWGuard [20],
that purport to detect ransomware, in the same vein as inexpensive commercial
virus scanners. Early detection has obvious benefits, primarily that ransomware
can be stopped before much data is lost. Because the behavior of ransomware
follows a fairly straightforward pattern, namely traversing the file system and
encrypting data, there is a basis for optimism that a behavioral malware detec-
tor could be effective against ransomware. Indeed, most of the products and
prototypes listed above use behavioral detection.

This paper studies the efficacy of these ransomware detectors and their
underlying strategies. Although these commercial detectors are generally closed
source, we develop a simple ransomware, a python script in less than 100 lines
of code, and vary its behavior to infer what these detectors are monitoring.
We identify several key features that these detectors use, including file sys-
tem behavior monitoring and decoy file monitoring. Recent research prototypes
have proposed to augment these features with monitoring for changes in file
entropy [5,15,16,20,30]. In most designs, systems combine these features. For
instance, Redemption [16] calculates a weighted average of these features, or
a malice score. For each of these principal features, the paper then explores,
through more targeted experiments, the degree to which these features can be
manipulated or evaded by a more sophisticated ransomware.

In short, our results indicate that, counter-intuitively, the behavioral app-
roach to ransomware detection is fragile in practice, and highly unlikely to
work against a sophisticated adversary. First, we find that several commercial
products cannot detect our “textbook” ransomware (Sect. 4.1). Second,
we consider the individual behaviors that are monitored and combined to form a
malice score. We demonstrate techniques that can effectively ransom users’ data,
while staying within a range that is indistinguishable from benign application
behavior. Specifically, this paper investigates:

– Entropy. (Sects. 3.1 and 3.2) By definition, a good encryption function
should yield a high-entropy ciphertext. A number of research prototypes look
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for a shift in entropy, either in reads versus writes or in original versus over-
written file contents, as an indicator of the presence of ransomware. First, we
observe that many common file formats have high entropy (e.g., pdf, jpg),
and encrypting these files does not shift their entropy outside of the expected
range. Second, for low-entropy files, this paper introduces several techniques
to manipulate entropy that still deprive users of their data. For instance, low
entropy files are necessarily compressible; if the ransomware first compresses
the file, encrypts the compressed contents, and then pads the resulting file to
its original length with regular contents, the encrypted output file’s entropy
will be comparable to the original.

– File Overwrite or Deletion Rate. (Sect. 3.3) Another natural monitoring
strategy is to identify processes that delete a large swath of files (in the case
where the encrypted versions are written elsewhere), or that overwrite a large
number of files in place (with the encrypted version). In the case of monitoring
for file overwrites, we show that one can evade this detection mechanism by
only encrypting portions of a file. For most file formats, there is important
metadata that can be encrypted, and that renders the entire file useless, at
least for the average user. We show that these techniques are not easily undone
by free or inexpensive file recovery tools. Although one might be able to pay
an expert to reconstruct this metadata, these costs are often commensurate
with the ransom.

– Decoy Files. (Sect. 3.4) Another common strategy for ransomware detection
is to place decoy files on the users’ file system, and monitor whether those
specific files are deleted or overwritten. We show that, in practice, the naming
and placement of these decoy files is easy to predict and differentiate from
the user’s “real” data; thus, it is trivial for ransomware to simply avoid these
decoy files.

In summary, this paper demonstrates considerable cause for pessimism about
the behavioral approach to ransomware protection. Although it is possible that
there is room for improvement in behavioral analysis, the margin where it can
identify malware without excessive false positives is likely narrow. We do note
that backups are not a panacea, as backups without security isolation can them-
selves be ransomed. On balance, we find that end users would be better served to
spend their IT budget on incremental backups within a separate administrative
domain and, more generally, securing their infrastructure, than on ransomware-
specific products.

2 Background

This paper focuses on ransomware that holds a user’s data hostage, in order to
extort payment from the user. There are other types of ransomware that are
either scams, such as misleading the user to believe they have a virus and should
pay to remove the virus [17], or that ransom the system, such as by locking the
bootloader, where the data itself is still available on the file system [29]. In this
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paper, we focus on ransoming encrypted data, as this is a growing threat and
harder for users to recover from [29].

The simple problem is that when users pay to recover their data, generally
out of desperation for business-critical data (e.g., billing records) or sentimental
data that was not backed up (e.g., baby photos), there is no guarantee they will
be able to recover their data. A 2018 report [7] states that more than half of
victims who paid a ransom failed to recover their data. There are projects that
can decrypt ransomed data for victims of well-known ransomware [23], but these
typically rely on flaws in the use of cryptography, such as reuse of a common
encryption key; if ransomware makes proper use of cryptography, there is no
reason to believe that any reasonable amount of analysis on the ransomware
binary or source code will lead to a decryption tool. Thus, research in this space
focuses on identifying ransomware attacks as they are in progress, and stopping
the ransomware before the data is lost.

As with most malware, we adopt a common assumption that an attacker will
be able to install and execute the ransomware. System defenses are not foolproof,
and users are prone to exploitable behavior, such as downloading code from the
internet that includes malware [2]. Similarly, anti-virus software can scan for
known static features of ransomware. Such as signatures of ransomware binaries,
encrypted file extensions or static ransom notes. We assume a strong adversary
that is evolving the ransomware over time. For instance, the Cerber ransomware
generates a new binary with a new signature every 15 s [22].

Based on a mixture of documentation, papers, and our own experiments,
Table 1 summarizes the principal features and techniques used by a range of
ransomware detectors, namely: file entropy (Sect. 2.1), file system operations
(Sect. 2.2), or decoy files (Sect. 2.3). This section explains how each feature is
used in greater detail.

Table 1. Detection methods used by state-of-the-art ransomware detection systems

Data entropy File system operations Decoy files

Research prototypes

Redemption [16] ✓ ✓

ShieldFS [5] ✓ ✓

RWGuard [20] ✓ ✓ ✓

Commercial products

CryptoDrop [30] ✓a ✓

CyberSight RansomStopperb ✓ ✓

Acronis Ransomware Protectionb ✓

CheckMAL AppCheckb ✓

ZoneAlarm Anti-Ransomwareb ✓ ✓
aCryptoDrop claims to use entropy to detect ransomware. However, we couldn’t find

evidence that they use entropy in the distributed version.
bThese are closed-source software and do not document their methods; we base this table

on monitoring their behavior.
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2.1 Data Entropy

File entropy [31] is a measurement, typically from 0..1, of how uniformly dis-
tributed the byte values in a file are. At one extreme, when a content of a file
consists of the same byte value, the entropy of the file is 0. At the other, a file
with a uniformly random distribution of byte values should have an entropy
approaching 1. In principle, any strong encryption algorithm should have high-
entropy outputs.
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Fig. 1. Entropy distribution of a corpus of 240
document files, grouped by common formats.

To give a sense of expected
entropy values for common file
types, we measure the entropy of
a corpus of 240 document files,
shown in Fig. 1 and grouped by
type. We selected the first 30 files
of each file type from the Gov-
docs1 corpus [11]. As a result, we
collected 180 Microsoft Office doc-
uments, 30 pdf documents, and 30
jpeg image files. We can see that
the entropy is widely distributed.
Legacy office formats (.doc and .xls) have the lowest entropy. Most media
formats, as well as Microsoft’s Office Open XML documents (e.g., docx, pptx,
xlsx) use compression, which leads to high entropy.

Since ransomware encrypts files, state-of-the-art ransomware detectors use
data entropy as a feature to identify encrypted files by monitoring the entropy.
Entropy is typically used in combination with other features, discussed in the
following subsections. Some detectors just monitor changes in the entropy of a
given file [20]; others, such as Redemption [16] compare the entropy of reads and
writes from a given process. In either approach, the detector looks for a signif-
icant upward shift in entropy, which would indicate that a file is likely being
encrypted. In order to avoid excessive false positives, this approach necessar-
ily involves some sensitivity analysis to “normal” and “abnormal” increases in
entropy. This also relies on a flawed assumption that there is room for entropy
to increase—i.e., that the file format is not already effectively at entropy 1, as
is common for formats such as .jpg and .pptx. In other words, the efficacy of
this feature rests on the assumption that one cannot effectively ransom a file’s
contents via encryption without significantly raising entropy.

2.2 File Overwrite and Deletion

Another common feature monitored by ransomware detectors is file overwrite
and deletion. Intuitively, if one wants to ransom a file by encrypting the contents,
the original contents must be overwritten with ciphertext, or, if the ciphertext
is in a different location, the original file must be deleted or renamed over.

As with entropy, this monitoring requires some sensitivity to differentiate
normal and abnormal behavior. Programs routinely update a portion of a file,
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or even rewrite an entire file. Speaking generally, we have observed a few common
measurement strategies. First, one can measure the percent of bytes overwritten
versus the total size of the file, called the overwrite ratio. Second, one can monitor
the total number of writes or deletions. Third, one can monitor the frequency of
write or delete operations. If one of these values rises above a certain threshold,
the process is flagged as malicious. Thus, for this feature, the goal for ransomware
is to stay below this threshold, but still, deprive the victim of their data.

A related strategy considers the file type or extension written. Benign pro-
grams usually write a small number of specific file types only. For example,
Microsoft Word will mostly write *.doc or *.docx files. The detector will flag
as potentially malicious a process that writes to multiple different types of files.

Directory Traversal. Some ransomware detectors also monitor for recursive direc-
tory scans, typically in concert with other write operations. Because recursive
directory scans are also executed by a number of benign applications, including
backup utilities and virus scanners, it is easy for this feature to create false posi-
tives that irritate users and erode faith in the tool. This paper does not consider
directory traversal in great detail, except to show in Sect. 4.5 that spreading
this work to a separate process than the encryption work is sufficient to avoid
detection by the commercial detectors that use this feature. Moreover, Sect. 5
shows that benign applications, such as git, can easily skew composite metrics
based on this behavior.

2.3 Decoy Files

Ransomware detectors may also create a set of decoy files with various file types
in the file system and monitor any changes to those files. Ransomware tends to
encrypt all documents in the system. Thus when the ransomware tries to encrypt
decoy files, the ransomware detector will notice the change in the expected con-
tents of the file, and flag the writing process as ransomware.

2.4 Combining Techniques

As illustrated in Table 1, most ransomware defenses calculate a weighted average
of a subset of the above techniques to form a global score, sometimes called a
malice score. Redemption [16] calculates a malice score using six features. These
six features are Entropy Ratio of Data Blocks, File Content Overwrite, Delete
Operation, Directory Traversal, Write access to different type of files, and Access
Frequency. Redemption scores each of the six features using different formulas,
and then uses a weighted average of the six individual scores; if this average is
above a threshold, the process is classified as ransomware. In general, combin-
ing features can lead to more robust classification, although setting appropriate
weights can be a challenge.
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3 Avoiding Detection

Section 2 explained the various features that are commonly used by ransomware
detectors, typically as a weighted average or score, to flag processes as ran-
somware. This section explains how each of these mechanisms can be circum-
vented. We note that each of the avoidance techniques in this section also has a
behavior that could be monitored; these behaviors overlap with common, benign
patterns, and the heart of the question is whether there are behaviors that clearly
delineate ransomware from benign software. Our results indicate that the line
between ransomware and benign software is finer than one might expect.
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Fig. 2. Entropy and size of an encrypted
file with a null, padding byte interleaved
after every N bytes of ciphertext. Fully
encrypted has no padding bytes inter-
leaved. File size is measured as a percent,
relative to the original plaintext. There is
a smooth trade-off between size and tar-
get entropy, while still withholding the
user’s data. (Color figure online)
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Fig. 3. A comparison of the original
and encrypted entropy when using the
compress-encrypt-pad strategy, using a
corpus of 240 sample files. Points on the
y = x line represent an encrypted file
with the same entropy and size as the
unencrypted file; points below this line
represent a reduction in entropy with
the same size; points above the line rep-
resent an increase in entropy for the
same size.

3.1 Entropy Laundering

Monitoring for a shift in entropy has an intuitive appeal, as encrypted outputs
are necessarily going to be high entropy. This monitoring can either detect shifts
in the contents of specific files, or in the difference between read and written
data from a process.

As established in Fig. 1, one fundamental challenge is dealing with high-
entropy file formats, such as a compressed Office document. The issue is that
these files already have entropy close to 1, and normal file edits can increase small
the entropy by small amounts—even as high as 1. In other words, for these file
formats, entropy monitoring will have an obnoxiously high false positive rate
and is simply not a good feature to monitor in these cases.
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Thus, this section focuses on the efficacy of monitoring lower-entropy file
formats. In other words, can we encrypt the file contents without changing the
overall entropy of the file? Our basic strategy, which we will iteratively refine, is
simple: we can encrypt the file (in memory) and then lower the entropy before
writing it to disk by appending the same byte value (say zero) to the end of the
file (let’s call these the padding bytes). In practice, a more sophisticated attacker
might instead interleave the padding bytes and the ciphertext.

The resulting entropy for interleaving a null padding byte between every N
bytes of ciphertext is shown in Fig. 2. Fully encrypted shows the entropy and size
of an encrypted file with no padding. The file used here is a PowerPoint slide
(.ppt) and entropy of the file is 0.55 and the file size is 1.9 MB. We encrypt the
file using AES algorithm in CBC mode.

Since entropies of encrypted files are mostly near one, this result is inde-
pendent of the original file’s entropy. When N = 1, this means the resulting
file alternates between a byte of ciphertext and a byte of padding, yielding an
entropy of about 0.6, or at roughly the first quartile of the lowest entropy formats
(e.g., .doc and .xls).

The second, red bar in the figure represents size. There is a fairly smooth
curve from N = 5..N = 1 in terms of trading size for lower entropy, and, although
not pictured, the trend can be extended beyond N = 1 if needed. If changing
the size is no issue, this experiment demonstrates that it is straightforward to
ensure an encrypted output with comparable entropy to the input.

Of course, ransomware detectors can also monitor for changes in a file size
or file overwrites, which we address in the next two subsections, respectively.

3.2 Maintaining File Size

Because many ransomware detectors also factor in file system operations, growth
in a file’s size is noticible; we refine the entropy laundering technique to preserve
a target file size. We remind the reader that entropy monitoring is only effective
for low entropy file formats.

Our second, simple observation is that low entropy files are highly compress-
ible. By using this characteristic, ransomware can first compress then encrypt
the smaller data payload, and finally, interleave the contents with padding to
lower the entropy and yield an output that matches the original file size.

To evaluate this, we first compress a file using the zlib module in Python.
Then we encrypt the compressed contents using the AES algorithm, and then
pad the resulting output to match the original file size. Figure 3 compares the
original file entropy (on the x-axis) to the encrypted file entropy (on the y-axis).
A perfect match in entropy would be a y = x line. The resulting distribution is
almost entirely at or below y = x; i.e., this process often yields a lower entropy
than the original file, and, in the worst case, the entropy is only raised by 3.4%.

This experiment shows that entropy can be lowered while maintaining the
file size, but at the cost of overwriting the entire file. Overwriting the file (or
deleting the file after writing these files elsewhere), is still easily detected by
several ransomware detectors.
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Fig. 4. Entropy changes in percentage
value for the partially encrypted file com-
pared to the original file for a corpus of
240 files. We encrypt a portion of the data
from 20–2.5%. Star (*) represents that we
used the compress-encrypt-pad strategy.
The graph shows that the entropy changes
are small, even when 20% of the file data
is encrypted.
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Fig. 5. Recovery rates for partial
encryption over a corpus of 200 pdf
files, when a portion of the data from
20–2% is encrypted. Block size of 256
bytes is used. Lower is better. The
results indicate that, even if only 5–
20% of the file is encrypted, roughly
half of the data is unrecoverable.

3.3 Partial Encryption

The goal of ransomware is to deny users their file contents. The techniques pre-
sented so far accomplish this goal at the cost of overwriting an entire file, which
can be detected by common techniques. This Subsection presents a technique
that only overwrites a portion of a file, but effectively denies the user access to
their data.

We observe that most file formats are brittle, with essential, non-redundant
metadata or other data whose interpretation is predicated on the previous bytes.
Corrupting (or encrypting) a relatively small portion of the file may be enough to
render the file unusable to most end-users. One can thus mimic small updates to
a file from a legitimate program with a combination of small updates to critical
portions of the file, with the techniques above that can preserve the same average
entropy of the encrypted bytes within the same space.

We first note a caveat to this attack: an expert in a given file format may be
able to recover part of a file’s contents. Specifically, the expert may successfully
recover the data structure of the file format; encrypted data cannot be recovered.
For instance, an engineer on the Adobe Acrobat team might be able to recover
part of a partially encrypted pdf document by hand. We expect that, even if
an end-user could find such an engineer, the hourly rate to recover a large data
set would quickly approach the cost of the ransom (typically on the order of
hundreds for individuals or tens of thousands of dollars for enterprises [9]). Thus,
to evaluate the efficacy of this technique, we primarily consider automated file
repair tools that are free or inexpensive (hundreds of dollars).

We define the success of this attack as: (1) updating only a small portion of
the file (less than 20%), (2) preserving the same size (3) preserving comparable
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entropy, and (4) rendering most files unopenable and unrepairable by free or
inexpensive tools.

As a simple proof-of-concept, we encrypted every N-th block of data in the
file to measure its effect on entropy. For instance, when encrypting 20% of the
file’s data, we encrypted every 5th block. We used the AES algorithm with a
block size of 1024 bytes to encrypt data. We also used compress-encrypt-pad for
the target portion of data to see the entropy changes.

This is an under-approximation of a more targeted encryption, but allows
us to measure the efficacy of the overall approach. Figure 4 shows the entropy
changes in percentage value. The entropy of a file is always increased because we
still encrypt a part of the file. However, when we use the compress-encrypt-pad
strategy described in Sect. 3.2, the maximum entropy change is less than 8%
when encrypting 20% of the file data. Most papers do not specify a particular
threshold for entropy, except RWGuard, which uses 6 (or 0.75 on our scale from
0..1). In this experiment, entropy shift is at most 0.07, even at an aggressive 20%
of encryption. A lower threshold would incur false positives, so we conclude that
this change is unlikely to trigger detection.

To measure whether partial encryption is effective at withholding user data,
we collected 200 different PDF documents from the web using Common Crawl
Document Download [4]. We choose PDF documents with a minimum of 10
pages. We partially encrypted these 200 files and recovered encrypted files using
the pdrepair utility from pdf-tools [25]. In practice, many documents are par-
tially recoverable or corrupted. In order to conservatively quantify the amount of
the document that can be recovered, we measure and compare the ink coverage
of the original and recovered documents using Ghostscript. Ink coverage is a
fraction of paper that is covered in each CMYK ink color.

Figure 5 shows the recovery rate distribution while the amount of encrypted
data changes. We used a block size of 256 bytes in this experiment. The recovery
rates increase as the amount of encrypted data decreases. We can see the average
recovery rate is about 15% when 20% of the file is encrypted. When we encrypted
5% of data, recovery rate increases. However, the average recovery rate is still
about 48%. At even lower percentages (3.3% and below), more than 64% of data
is recoverable. Thus, we see a “sweet spot” when 5–20% of the file is encrypted,
roughly half of the user’s data is withheld.

As another point of comparison, and for more visual intuition about the
data recovery, we did the same experiments with a JPEG image. The sample
encrypted JPEG images are shown in Fig. 6. In this experiment, we change the
percent of the file that is encrypted using a 256 bytes block size.

When we encrypt 10% of image data, it is difficult to recognize the image
contents. However, when we encrypt 2.5% of image data, an encrypted image
is annoying but we can figure out that the original image contains a butterfly
and a flower. Overall, encrypting a modest portion of the file (5% or more) is
effective at rendering the photograph useless to the average user.

We try to recover the partially encrypted images from the first experiment
(Fig. 6a) using Adobe Photoshop. We recover the damaged areas using content-
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Original 10% 5% 2.5%

(a) Sample JPEG image after encrypting a portion of the data, from
10–2.5%.

Original 10% 5% 2.5%

(b) Recovery of partially encrypted images from the first row, using
Photoshop.

Fig. 6. Sample images resulting from various partial encryption parameter settings.

aware fill feature [8]. This feature fills a selected area in an image using information
from the rest of the image. For all three images, Photoshop generates reasonable
images, shown in Fig. 6b. However, Photoshop couldn’t recover the details because
it doesn’t have any information about the damaged area, rather, the encrypted
regions appear more blurred together to mask some of the most noticeable arti-
facts. Nonetheless, for photos with sentimental value, such a baby photos, we
expect this level of recovery would be unacceptable and many users would pay
a ransom to recover high-quality images.

In summary, the partial encryption technique can avoid detection by only
writing to a small portion of a file (effective at 3–5% of total bytes overwritten,
which is commensurate with light edits to the file in a legitimate application),
preserving the same file size, and rendering the majority of the data unrecover-
able for less than the cost of the ransom.

3.4 Decoy Avoidance

Some ransomware detectors generate decoy files in a file system. They moni-
tor these specific files and flag the process when these files are modified. This
subsection analyzes decoy files and their generation pattern.

We examine the decoy files generated by three commercial products,
CyberSight RansomStopper, Cybereason RansomFree, and ZoneAlarm Anti-
Ransomware. All three products create a decoy directory to store decoy files in
important user directories, such as “My Documents” or “Desktop”. Thus decoy
files are not necessarily placed with other user files. In the decoy directory, vari-
ous types of document and multimedia files are generated as decoy files, because
some ransomware encrypts only specific file types. All three ransomware detec-
tors generate one of each file type in the directory. So we start by creating two
handwritten rules to detect a decoy directory: if more than three different types



On the Effectiveness of Behavior-Based Ransomware Detection 131

of files exist in a directory, and no more than two files of the same type exist in
the directory, we conclude that it is a decoy directory. If a directory meets these
two conditions, ransomware can just avoid this directory. In short, these decoys
in practice are painfully obvious and easy to avoid.

To simulate a more sophisticated ransomware detector, we flatten this direc-
tory structure and collect 350 filenames. Filenames of decoy files are generated
as a combination of random words. Some detector put a message to not delete
the file in every filename, such as “Endpoint Resume Do NotRemove.doc”. We
use collected filenames to train a Naive Bayes classifier. Our classifier can classify
files with 88.5% accuracy and 98.3% recall. High recall means a ransomware can
detect most of the decoy files with very low false negatives.

Of course, more sophisticated decoy file generation is possible. The challenge
is creating files that are truly indistinguishable from a user’s data, and it is likely
that efforts to improve decoy creation would lead to an “arms race” between
decoy detection and decoy generation. The more decoy files look like user files,
the harder it will be for ransomware to avoid; on the other hand, this also
improves the risk of the user deleting a decoy or editing the decoy by accident,
and triggers a false alarm.

3.5 I/O Rate: Slow, Multi-process Attack

In monitoring file system operations, ransomware detectors often factor in the
rate of I/O. As a result, recent ransomware is slowing down the encryption
process to avoid detection [27].

Similarly, we found that most ransomware detectors are sensitive to spread-
ing the work across multiple processes. Sometimes anti-ransomware monitors a
behavior of individual processes. An attacker spreads out the attack on multi-
ple processes. Each process performs small operations and is not suspicious to
detector [26].

4 Commercial Products

We evaluated commercial anti-ransomware products, 9 anti-ransomware prod-
ucts: CyberSight RansomStopper (3.1.1), Acronis Ransomware Protection (Build

1700), CheckMAL AppCheck (2.5.35.2), CryptoDrop (1.5.353.1336), ZoneAlarm Anti-
Ransomware (1.1.1023.17955), Cybereason RansomFree (2.4.2.0), Bitdefender Anti-
ransomware (1.0.12.151), Malwarebytes (3.6.1.2711), and Trend Micro Ransom
Buster (12.0.1150) and 6 anti-virus products: Webroot Secure Anywhere (9.0.24.49),
Kaspersky Anti-Virus (1.1.534.17681), ESET NOD32 (11.2.49.0), AVG AntiVirus
(18.6.3066), Avast Free Antivirus (18.6.2349), and McAfee Total Protection (16.0

R12). We select products that specifically advertise ransomware protection. These
software are closed-source, and thus we cannot confirm in all cases whether they
monitor behavioral features; that said, some products do specify that they mon-
itor behavioral features (e.g., file activities) in their datasheet or website.
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We first test the ability of these products to detect known, real-world ran-
somware samples. Five ransomware samples are used in this experiment: Tes-
laCrypt, Jigsaw, Locky, Cerber, and WannaCry. These ransomware families
infected a large number of victims and were released on or before 2017 [13,34].
Therefore, we expect they are well-known to the anti-malware industry. All
five samples encrypt and ransom user files. We execute these samples on a
system running each anti-ransomware product. Except for Bitdefender Anti-
Ransomware and Webroot Secure Anywhere, all commercial products can suc-
cessfully detect all of these real-world ransomware samples. Bitdefender Anti-
Ransomware is designed to detect only one of three ransomware families, CTB-
Locker, Locky, and TeslaCrypt, but it could not detect any of the five samples.
Webroot Secure Anywhere could detect TeslaCrypt and Jigsaw samples but it
could not detect Locky, Cerber, and WannaCry samples. Four anti-virus prod-
ucts detect these samples right after the binary file is copied to the system, even
before execution, namely: Kaspersky Anti-Virus, ESET NOD32, AVG AntiVirus,
and Avast Free Antivirus. This result shows most of the target products are
effective for known ransomware.

Second, we evaluate commercial products using a simple, hand-written ran-
somware in python. Our ransomware recursively encrypts each file in a user’s
home directory as quickly as possible. The ransomware encrypts a file using
the AES algorithm in CBC mode with Python Cryptography Toolkit (pycrypto).
When encrypting a file, the ransomware overwrites the file with encrypted con-
tents. Unless otherwise specified, the ransomware uses a block size of 1024 Bytes.
We created a Windows 7 VM in Virtual Box and experimented with commer-
cial products in the VM. We place 3,000 files with sizes ranging from 1 KB to
106 MB in the user’s home directory. These files are the first 3,000 files from the
Govdocs1 corpus [11]. We placed the first 1,000 files in the user’s My Documents
directory, the next 1,000 files in the user’s Downloads directory, the last 1,000
files in the user’s desktop. The total size of these files is 1.6 GB. When an anti-
ransomware can’t detect our ransomware, we ran the test at least two times
until seeing the consistent results. We plan to release our ransomware scripts
and supporting data upon publication. With this “toy” ransomware, we mea-
sure the effectiveness of each of the evasion techniques described in the previous
section.

4.1 Basic Ransomware, No Evasion

The most striking result is that our textbook ransomware was not detected
by four of the anti-ransomware products: Cybereason RansomFree, Bitdefender
Antiransomware, Malwarebytes, and Trend Micro Ransom Buster nor by any of
the 6 anti-virus products that advertise ransomware defense. We assume that
the reason is that these products solely rely on static features, such as match-
ing known binary signatures in order to detect ransomware. Our hand-written
ransomware would not match a known signature. The most likely explanation
is that these products are not behavior-based ransomware detectors. Therefore,
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Table 2. Commercial anti-ransomware software, and their ability to detect stealthy
ransomware. A checkmark in the table means anti-ransomware can detect the ran-
somware; a percentage indicates the threshold below which the detector could no longer
detect the ransomware.

Basic ran-

somware

Basic ran-

somware

(New file)

Partial

encryption

Decoy

avoidance

Slow

encryption

Multi-

process

encryption

Anti-ransomware

CyberSight RansomStopper ✓ ✓ ✓ ✓ *

Acronis Ransomware Protection ✓ ✓ ✗ (33%) ✓a

CheckMAL AppCheck ✓ ✓ ✗ (25%) ✓a ✓

CryptoDrop ✓ ✓ ✓ ✓a ✓ ✓

ZoneAlarm Anti-Ransomware ✓ ✓ ✓ ✓
aThese anti-ransomware products don’t use decoy files.

we excluded these products, and did the further analysis on 5 behavior-based
ransomware detectors.

AVG AntiVirus has a feature called strict ransomware protection mode. With
this mode on, it can detect ransomware but any process that writes to a specified
directory is flagged. Consequently, the false positive rate is very high—even a
benign word processor is required to get approval to save a document.

Some ransomware creates a new file with encrypted data and deletes the
original. Thus, we create a variant of basic ransomware that creates encrypted
versions and then deletes the user files. However, most commercial products we
tested behave the same toward both variants of the basic ransomware. Only
one anti-ransomware product, ZoneAlarm Anti-Ransomware, can’t detect ran-
somware when it creates a new encrypted file and deletes the original.

Table 2 shows these anti-ransomware products and their effectiveness on
evasion techniques, explained in more detail below. Anti-ransomware products
which couldn’t detect the basic ransomware are excluded. A checkmark in the
table means that the ransomware detector can detect the ransomware with the
feature. In partial encryption, the percentage value indicates the highest portion
of encryption that the anti-ransomware cannot detect; a checkmark means the
tool can detect any amount of encryption.

4.2 Partial Encryption

We implement partial encryption (Sect. 3.3) in our basic ransomware. Ransom-
Stopper, CryptoDrop, and ZoneAlarm Anti-Ransomware can detect the ran-
somware regardless of the portion of data encrypted. However, Acronis Ran-
somware Protection cannot detect when N ≥ 3 which means the ransomware
encrypts less than or equal to 33% of file data. AppCheck can’t detect when
N ≥ 4 that the ransomware encrypts less than or equal to 25% of file data.As
discussed in Sect. 3.3, a user will lose more than 75% of the contents of a file,
when only 10% of the data in the file is encrypted.
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4.3 Avoiding Decoy Files

Two of the products in Table 2 generate decoy files: CyberSight RansomStop-
per and ZoneAlarm Anti-Ransomware. Interestingly, these monitors will tolerate
small changes to these decoy files without flagging the process as ransomware.
Thus deleting or overwriting on one of the decoy files won’t trigger the detector.
This implies that these detectors monitor a combination of other features to
make a decision. This makes some intuitive sense, as decoy files are user-visible
and may be accidentally removed by a user.

We avoided encrypting decoy files using the hand-written rules described in
Sect. 3.4. This was sufficient to avoid detection by CyberSight RansomStopper.
ZoneAlarm can detect the ransomware even when we didn’t modify any decoy
files.

4.4 Slow Encryption

We measure the impact of encryption rate on the ransomware detectors. We mod-
ified the basic ransomware to wait 60 s between encrypting each file. To evaluate
slow encryption, we used 300 target files instead of 3000 files. We choose the first
100 files in each of 3 directories. Since we waited 60 s per one file encryption,
total encryption time was approximately 330 min, whereas the basic ransomware
took less than 10 min to encrypt entire user files (3000 files). This change was
sufficient to elide detection in Acronis Ransomware Protection.

4.5 Multi-process Encryption

To measure the sensitivity to dividing the work across processes, one process
recursively traverses directories and then forks workers that encrypt a single file
and then exit. This was sufficient to evade three of the ransomware detectors:
Acronis Ransomware Protection, CheckMAL AppCheck, and ZoneAlarm Anti-
Ransomware. A fourth detector, RansomStopper, shows an interesting result: it
detects modifications on decoy files, but only kills the worker process, letting
processes continue encrypting all of the other files.

4.6 False Positives on CryptoDrop

In the previous experiments, CryptoDrop shows strong performance on detec-
tion; it detected all of our evasion strategies. Upon further investigation, how-
ever, we find that CryptoDrop is simply monitoring heavy writes to multiple
files, and tested whether it would also trigger high false positives. First, we open
a new Windows Notepad and write around 1 KB text and save in My Documents
directory. When we save copies of this file with 20–30 different names using
the “Save As...” menu, CryptoDrop labels Windows Notepad as ransomware.
Next, we extract a zip file which consists of 50 files in My Documents directory.
We used 7zip and Windows Explorer to extract the file, and CryptoDrop flags
both 7zip and Windows Explorer as ransomware. Finally, we browse the web
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normally using Firefox. We downloaded a file to My Documents directory after
every 3–5 pages. When we downloaded the 5th file, CryptoDrop labels Firefox
as ransomware.

Although CryptoDrop can detect all of our evasion techniques, it comes at
a cost of excessive false positives for users. This result is consistent with the
overall hypothesis that there is a very slim range of behaviors that are unique
to ransomware.

4.7 Entropy

Although several proposed ransomware detection methods use file entropy as a
feature [5,15,16,20], we observed that most commercial ransomware detectors
seemed insensitive to the entropy of a file write.

As a simple experiment, we modified our basic ransomware to simply over-
write 25% of file data with null bytes instead of encrypted bytes, which would
lower the entropy. In this case, all of the commercial ransomware detectors
flagged our ransomware based on the volume of data that was written. Although
we cannot confirm that these detectors are not considering data entropy, the fact
that they flag code as ransomware that issues large writes but lowers entropy
indicates that these tools are likely insensitive to data entropy. It is possible
that our ransomware was so simple that entropy detection was not triggered,
and a more complex ransomware would trigger entropy monitoring; nonetheless,
the observation that the entropy-lowering ransomware is detected is disquiet-
ing. We will return to the entropy experiment in Sect. 5, when we consider a
state-of-the-art research prototype.

5 Research Prototypes

We contacted the authors of both Redemption [16] and ShieldFS [5]; neither
provided us with a source or a binary drop. Thus, we instead did our best to
reimplement the malice score as described in the Redemption paper.

To evaluate Redemption’s malice score technique, we ran three benign appli-
cations and two variants of our basic ransomware: the non-evasive version, and
the version that performs partial encryption (at 10% of the files’ contents), and
at a rate of one file per 2 s. 10% is selected as a relatively generous threshold; our
experiments indicate we could easily drop to 3–5% if needed. The three benign
applications are a git clone of Linux kernel, Linux kernel build, and bzip2 com-
pression of Linux kernel code. This experiment is done on Linux, and we use
strace to trace each process and score features using the trace.

We made two assumptions while scoring because some features are not clearly
described in the Redemption paper [16]. First, when measuring the file over-
writes, we didn’t count newly created files as overwritten. Second, to score a
directory traversal, we counted the maximum number of files that are accessed
sequentially in the same directory; Redemption scores the “additive inverse of
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the number of privileged accesses to unique files in a given path.” The paper
does not provide values for the thresholds.

Redemption calculates a malice score per process. All three benign applica-
tions invoke multiple processes. For computing the malice score, we merged I/Os
from these processes, treating them as a single application.

The malice score over time is shown in Fig. 7. The highest malice score among
the benign applications is a Linux kernel compile, which is consistently around
0.5. This is attributable to the build process frequently writing files in multiple
directories. In Fig. 7a, git clone does not trigger a high malice score most of
the time. Most of the time git downloads objects in a file without an extension.
At the end of the cloning process, git creates a local branch from the master
branch. At this moment, git creates a lot of source code files, with known
extensions, in the file system. Consequently, the malice score increases to 0.61.
Two features, high scores from directory traversal, and write access to different
type of files contribute to git’s spike in malice score. Finally, bzip2 has a low
malice score. Unlike other workloads, bzip2 does not delete any files, writes to a
single document class, and only traverses directories with read access. In total,
we expect that these applications show the range of expected malice scores. In
order to avoid heavy false positives, a ransomware detector would likely need to
flag applications that spent significant time over 0.6.
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Fig. 7. Redemption [16]’s malice score over time of three benign application executions,
a naive ransomware, and a more evasive ransomware. Lower is less likely to be malware.
Our evasive ransomware has a consistently lower malice score than a Linux kernel
compilation.
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Results from our ransomware are in Fig. 7d and e. In the basic ransomware
experiment (Fig. 7d), the malice score increases as high as 0.65, and would likely
be flagged. This is primarily attributable to the directory traversal component.
We observe that the malice score is more sensitive to directory traversal than
the entropy ratio.

Partial and slow encryption lowers the malice score—usually at or below 0.4
and, at most, 0.51. Recall that anything below 0.6 is unlikely to be flagged as
ransomware with this method.

6 Related Work

Similar to this work, Genç et al. studied ransomware detection and evasion
techniques for key-oriented protection and behavioral analysis [12]. Similar to our
work, the authors describe two evasion methods: pseudo-random permutation
for encryption and partial encryption. Our work advances the state of the art
in three ways. First, their proposed permutation method avoids entropy-based
detection, but is less robust to reverse engineering by a victim than a standard
cipher; our paper shows how to use a standard cipher with the compress-encrypt-
pad method and still avoid using entropy-based detection. Second, the authors
mentioned 20% encrypted files are unusable, but they didn’t discuss the efficacy
of the partial encryption. This paper shows that partial encryption is effective to
extort user files even when a victim used the recovery tools. Finally, our paper
studies additional evasion techniques, such as slow encryption, multi-process
encryption, and decoy avoidance to evade more detecting methods.

One significant component of an attack, orthogonal to this paper, is load-
ing malware onto the target system. Malware can get onto a computer by a
user’s explicit mistake, such as downloading an attachment from a phishing
email or malicious website; more stealthily by using a system vulnerability [32];
or via a malware distribution service [2]. Most related to this paper, Gangwar
et al. analyze these delivery methods and try to detect ransomware by delivery
method [10].

Most ransomware needs to communicate with the ransomers who will collect
the payment. Malware often has a command and control (C&C) server to control
it remotely. In ransomware, C&C server is used to exchange encryption key or
other client details. Several works are available to detect ransomware at the
network level by monitoring and identifying these communications between the
C&C server and the victim host [1,6]. Our toy ransomware uses a static key and
does not perform any network communication. To evade detection by network
activity some ransomware locally generates a key instead of getting one from a
C&C server [24].

Some anti-ransomware create hooks in common cryptographic libraries.
When ransomware tries to encrypt a file, the anti-ransomware can intercept
and save the key. Then it decrypts the files using the saved decryption key. Pay-
Break [18] successfully retrieves the key from ransomware that uses Microsoft
Cryptographic API [33]. The authors showed that it can even detect ransomware
that statically links known cryptographic libraries, such as Crypto++.
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Cheng et al. studied partial encryption methods on media files [3], in order to
reduce encryption/decryption costs. Here, the goal is different—confidentiality
of these files—whereas the goal of this paper is to explore the efficacy of partial
encryption to ransom a user’s data.

A system can implicitly provide a backup. Ransomware needs to overwrite
the data in the hard drive. Modern hardware, such as Solid State Drives (SSDs),
tend to leave the old files untouched because the device can only erase at the
granularity of an erase block. FlashGuard [14] modifies SSD garbage collection
to retain the copies of the old files for the file recovery when encrypted by
ransomware.

Most general-purpose malware detectors such as signature-based are looking
for ransomware. More precisely, for known ransomware. Marpaung et al. survey
malware evasion techniques [19]. Since ransomware is a kind of malware, the
attacker can use these methods to evade traditional malware detectors.

7 Conclusion

This paper demonstrates that there is considerable cause for pessimism about
the effectiveness of host-level ransomware detectors. A “textbook” ransomware
cannot be detected by a number of commercial anti-ransomware products; rela-
tively straightforward evasive techniques can thwart the rest, yet still effectively
ransom user’s data. More sophisticated behavioral analyses are unlikely to fare
better; a deeper exploration of each of the features proposed in the literature,
as well as aggregate metrics, are unlikely to accurately distinguish ransomware
from benign software.

Acknowledgments. We thank the anonymous reviewers, our shepherd Karim Elish,
and Bhushan Jain for their insightful comments on previous drafts. This mate-
rial is based upon work supported by the NSF/VMware Partnership on Software
Defined Infrastructure (SDI) as a Foundation for Clean-Slate Computing Security (SDI-
CSCS) program under Award “SDI-CSCS: Collaborative Research: S2OS: Enabling
Infrastructure-wide Programmable Security with SDI”, grant numbers CNS-1700512
and CNS-1834216.

References

1. Cabaj, K., Mazurczyk, W.: Using software-defined networking for ransomware mit-
igation: the case of CryptoWall. IEEE Netw. 30(6), 14–20 (2016)

2. Caballero, J., Grier, C., Kreibich, C., Paxson, V.: Measuring pay-per-install: the
commoditization of malware distribution. In: USENIX Security Symposium, p. 13
(2011)

3. Cheng, H., Li, X.: Partial encryption of compressed images and videos. IEEE Trans.
Signal Process. 48(8), 2439–2451 (2000)

4. Common Crawl Document Download. https://github.com/centic9/CommonCrawl
DocumentDownload

https://github.com/centic9/CommonCrawlDocumentDownload
https://github.com/centic9/CommonCrawlDocumentDownload


On the Effectiveness of Behavior-Based Ransomware Detection 139

5. Continella, A., et al.: ShieldFS: a self-healing, ransomware-aware filesystem. In:
Proceedings of the 32nd Annual Conference on Computer Security Applications,
pp. 336–347. ACM (2016)

6. Cusack, G., Michel, O., Keller, E.: Machine learning-based detection of ransomware
using SDN. In: Proceedings of the 2018 ACM International Workshop on Security
in Software Defined Networks & Network Function Virtualization, pp. 1–6. ACM
(2018)

7. CyberEdge Group: 2018 cyberthreat defense report. Technical report, CyberEdge
Group (2018)

8. Ding, M., Tong, R.F.: Content-aware copying and pasting in images. Visual Com-
put. 26(6–8), 721–729 (2010)

9. Everett, C.: Ransomware: to pay or not to pay? Comput. Fraud Secur. 2016(4),
8–12 (2016)

10. Gangwar, K., Mohanty, S., Mohapatra, A.K.: Analysis and detection of ransomware
through its delivery methods. In: Panda, B., Sharma, S., Roy, N.R. (eds.) REDSET
2017. CCIS, vol. 799, pp. 353–362. Springer, Singapore (2018). https://doi.org/10.
1007/978-981-10-8527-7 29

11. Garfinkel, S., Farrell, P., Roussev, V., Dinolt, G.: Bringing science to digital foren-
sics with standardized forensic corpora. Digit. Investig. 6, S2–S11 (2009)
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